阅读申明

1．本站收集的数据手册和产品资料都来自互联网，版权归原作者所有。如读者和版权方有任何异议请及时告之，我们将妥善解决。
2．本站提供的中文数据手册是英文数据手册的中文翻译，其目的是协助用户阅读，该译文无法自动跟随原稿更新，同时也可能存在翻译上的不当。建议读者以英文原稿为参考以便获得更精准的信息。
3．本站提供的产品资料，来自厂商的技术支持或者使用者的心得体会等，其内容可能存在描叙上的差异，建议读者做出适当判断。
4．如需与我们联系，请发邮件到marketing＠iczoom．com，主题请标有＂数据手册＂字样。

Read Statement

1．The datasheets and other product information on the site are all from network ref－ erence or other public materials，and the copyright belongs to the original author and original published source．If readers and copyright owners have any objections， please contact us and we will deal with it in a timely manner．

2．The Chinese datasheets provided on the website is a Chinese translation of the En－ glish datasheets．Its purpose is for reader＇s learning exchange only and do not in－ volve commercial purposes．The translation cannot be automatically updated with the original manuscript，and there may also be improper translations．Readers are advised to use the English manuscript as a reference for more accurate information．

3．All product information provided on the website refer to solutions from manufac－ turers＇technical support or users the contents may have differences in description， and readers are advised to take the original article as the standard．

4．If you have any questions，please contact us at marketing＠iczoom．com and mark the subject with＂Datasheets＂．

VOLTAGE-CONTROLLED CRYSTAL OSCILLATOR (VCXO) OUTPUT : LV-PECL

VG-4512CA

-Frequency range
-Supply voltage
-Absolute pull range

- External dimensions
-Function
-Output

80 MHz to 200 MHz 3.3 V $50 \times 10^{-6}, 100 \times 10^{-6}$ $7.0 \times 5.0 \times 1.6 \mathrm{~mm}$ Output enable (OE) Active High or Low : LV-PECL

Specifications (characteristics)

Item	Symbol	Specifications	Conditions / Remarks
Output frequency range	f0	80.000 MHz to 200.000 MHz	Please contact us about available frequencies.
Supply voltage	Vcc	$3.3 \mathrm{~V} \pm 0.165 \mathrm{~V}$	
Storage temperature	T_stg	$-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	Storage as single product.
Operating temperature	T_use	$\mathrm{G}:-40$ to $+85^{\circ} \mathrm{C}, \mathrm{J}:-20$ to $+70^{\circ} \mathrm{C}, \mathrm{K}: 0$ to $+70^{\circ} \mathrm{C}$	
Frequency tolerance	f_tol	$\pm 50 \times 10^{-6}$ Max.	Includes frequency aging (20 years)
Current consumption	Icc	60 mA Max.	50Ω
Absolute pull range *1	APR	$\mathrm{H}: \pm 100 \times 10^{-6}$ Min., G: $\pm 50 \times 10^{-6} \mathrm{Min}$.	$\mathrm{V} \mathrm{c}=1.65 \mathrm{~V} \pm 1.50 \mathrm{~V}$
Input resistance	Rin	$100 \mathrm{k} \Omega$ Min.	DC level
Frequency change polarity	-	Positive slope	$\mathrm{V}=0.15$ to 3.15 V
Symmetry	SYM	45 \% to 55 \%	$\mathrm{Vcc}=1.3 \mathrm{~V}, \mathrm{Vc}=1 / 2 \mathrm{Vcc}$
Output voltage	VOH	Vcc-1.1 V Min.	
	Vol	Vcc-1.5 V Max.	
Output load condition (ECL)	L_ECL	50Ω	Terminated to Vcc-2.0V
Input voltage	VIH	70 \% Vcc Min.	
	VIL	30 \% Vcc Max.	
Rise time / Fall time	tr / tf	1.0 ns Max.	between 20% and 80% of ($\mathrm{V}_{\text {OH- }}-\mathrm{V}_{\mathrm{OL}}$)
Start-up time	t_str	$10 \mathrm{~ms} \mathrm{Max}$.	Time at minimum supply voltage to be 0 s
Frequency aging	f_aging	This is included frequency tolerance	$+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, 20$ years

${ }^{*}$ Absolute pull range = Frequency control range - Frequency tolerance

* Please keep Vc pin open or ground while powering up Vcc.

(1)Model (2)Package type (3) Frequency (MHz) (4)Operating temperature (5)Absolute pull range © 6 Supply voltage ($\mathrm{C}: 3.3 \mathrm{~V}$ Typ.) (7)OE function

(4) Operating temperature	
G	-40 to $+85^{\circ} \mathrm{C}$
J	-20 to $+70^{\circ} \mathrm{C}$
K	0 to $+70^{\circ} \mathrm{C}$

Footprint (Recommended) (Unit :mm)

To maintain stable operation, provide a 0.01 uF to 0.1 uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).

